Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38388738

RESUMO

PURPOSE: The detection rate of Salmonella enterica serovar 1,4,[5], 12: i: - (S. 1,4,[5], 12: i: -) has increased as the most common serotype globally. A S. 1,4,[5], 12: i: - strain named ST3606 (sequence type 34), isolated from a fecal specimen of a child with acute diarrhea hospitalized in a tertiary hospital in China, was firstly reported to be resistant to carbapenem and ceftazidime-avibactam. The aim of this study was to characterize the whole-genome sequence of S. 1,4,[5], 12: i: - isolate, ST3606, and explore its antibiotic resistance genes and their genetic environments. METHODS: The genomic DNA of S. 1,4,[5], 12: i: - ST3606 was extracted and performed with single-molecule real-time sequencing. Resistance genes, plasmid replicon type, mobile elements, and multilocus sequence types (STs) of ST3606 were identified by ResFinder 3.2, PlasmidFinder, OriTfinder database, ISfinder database, and MLST 2.0, respectively. The conjugation experiment was utilized to evaluate the conjugation frequency of pST3606-2. Protein expression and enzyme kinetics experiments of CTX-M were performed to analyze hydrolytic activity of a novel CTX-M-261 enzyme toward several antibiotics. RESULTS: Single-molecule real-time sequencing revealed the coexistence of a 109-kb IncI1-Iα plasmid pST3606-1 and a 70.5-kb IncFII plasmid pST3606-2. The isolate carried resistance genes, including blaNDM-5, sul1, qacE, aadA2, and dfrA12 in pST3606-1, blaTEM-1B, aac(3)-lld, and blaCTX-M-261, a novel blaCTX-M-1 family member, in pST3606-2, and aac(6')-Iaa in chromosome. The blaCTX-M-261 was derived from blaCTX-M-55 by a single-nucleotide mutation 751G>A leading to amino acid substitution of Val for Met at position 251 (Val251Met), which conferred CTX-M increasing resistance to ceftazidime verified by antibiotics susceptibility testing of transconjugants carrying pST3606-2 and steady-state kinetic parameters of CTX-M-261. pST3606-1 is an IncI1-α incompatibility type that shares homology with plasmids of pC-F-164_A-OXA140, pE-T654-NDM-5, p_dm760b_NDM-5, and p_dmcr749c_NDM-5. The conjugation experiment demonstrated that pST3606-2 was successfully transferred to the Escherichia coli recipient C600 with four modules of OriTfinder. CONCLUSION: Plasmid-mediated horizontal transfer plays an important role in blaNDM-5 and blaCTX-M-261 dissemination, which increases the threat to public health due to the resistance to most ß-lactam antibiotics. This is the first report of blaCTX-M-261 and blaNDM-5 in S. 1,4,[5], 12: i: -. The work provides insights into the enzymatic function and demonstrates the ongoing evolution of CTX-M enzymes and confirms urgency to control resistance of S. 1,4,[5], 12: i: -.

2.
J Med Virol ; 95(4): e28719, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37185839

RESUMO

The innate immune response is the first line of host defense against viral infections, but its role in immunity against SARS-CoV-2 remains unclear. By using immunoprecipitation coupled with mass spectroscopy, we observed that the E3 ubiquitin ligase TRIM21 interacted with the SARS-CoV-2 nucleocapsid (N) protein and ubiquitinated it at Lys375 . Upon determining the topology of the TRIM21-mediated polyubiquitination chain on N protein, we then found that polyubiquitination led to tagging of the N protein for degradation by the host cell proteasome. Furthermore, TRIM21 also ubiquitinated the N proteins of SARS-CoV-2 variants of concern, including Alpha, Beta, Gamma, Delta, and Omicron together with SARS-CoV and MERS-CoV variants. Herein, we propose that ubiquitylation and degradation of the SARS-CoV-2 N protein inhibited SARS-CoV-2 viral particle assembly, by which it probably involved in preventing cytokine storm. Eventually, our study has fully revealed the association between the host innate immune system and SARS-CoV-2 N protein, which may aid in developing novel SARS-CoV-2 treatment strategies.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Imunidade Inata , SARS-CoV-2/metabolismo , Ubiquitina/metabolismo , Ubiquitinação , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...